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A Polish group is a topological group whose topology is a Polish
topology. For a Polish group G and Polish space X , a Borel group
action is a group action a of G on X , and as a function from
G × X to X it is Borel. The orbit equivalence relation EX

G induced
by a is defined as:

xEX
G y ⇔ ∃g ∈ G , a(g , x) = y .

The space X together with the action a is also called a Borel
G -space.
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For an equivalence relation E defined on a Polish space X and
another equivalence relation F defined on a Polish space Y , if there
is a Borel map f from X to Y such that for any x , y ∈ X , we have

xEy ⇔ f (x)Ff (y)

then we say E is Borel reducible to F , denoted by E ≤B F .
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Theorem(Gao–Jackon)
Let G be a countable abelian group and EX

G be induced by a Borel
G -action, then EX

G is hyperfinite.
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Theorem(Mackey–Hjorth)
Let G be a Polish group and H be a closed subgroup of it. Then
for every equivalence relation EX

H induced by a Borel H-action,
there is a Borel G -action on some Polish space Y such that EX

H is
Borel reducible to EY

G .

Theorem(Becker–Kechris)
For every Polish group G , there is a universal Borel G -space.

We denote the induced equivalence relation on the universal Borel
G -space by EG .
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Corollary
Let G be a Polish group and H be a closed subgroup of it, then
EH ≤B EG .

Definition
A Polish group G is universal if every Polish group is isomorphic to
a closed subgroup of G .

Corollary
If a given Polish group G is universal, then EG is a complete orbit
equivalence relation.
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Theorem(Zielinski)
The homeomorphism relation on compact Polish spaces is a
complete orbit equivalence relation.

Theorem(Gao-Kechris, Clemens)
The isometry relation of Polish metric spaces is a complete orbit
equivalence relation.
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Open Problem(Sabok)
If EG is a complete orbit equivalence relation, is G necessarily a
universal Polish group?
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Fact
Let G be a Polish group and H be a quotient Polish group of it.
Then for every equivalence relation EX

H induced by a Borel
H-action, it can also be induced by a Borel G -action X .
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Definition
A surjectively universal Polish group G is such that every Polish
group is isomorphic to a topological quotient group of G .

Corollary
If a given Polish group G is surjectively universal, then EG is a
complete orbit equivalence relation.
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Definition
A surjectively universal Polish group G is such that every Polish
group is isomorphic to a topological quotient group of G .

Corollary
If a given Polish group G is surjectively universal, then EG is a
complete orbit equivalence relation.
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Theorem(Ding)
There exists a surjectively universal Polish group.

Theorem(Ding-L.-Peng)
There exists a surjectively universal Polish group that is not
universal.
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The Graev metric group
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Let X be a set, then take e ̸= X and X−1 = {x−1 : x ∈ X}.
Denote X ∪ X−1 ∪ {e} by X̄ . Let e−1 = e and (x−1)−1 = x .

We denote the set of words over X̄ by W (X ), in other words,
W (X ) = X̄<ω
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For w in W (X ), if e and xx−1 don’t occur in w as a subword for
every x ∈ X̄ , then we say w is irreducible. The collection of
irreducible words is denoted by F (X ). We use the symbol □ to
represent the empty word.

For w in W (X ), by deleting its subwords with the form e or xx−1

where x ∈ X̄ , we get a irreducible word, denoted by w ′. we say w
is a trivial extension of w ′.

The set F (X ) is a group under the operation u · v = (u ⌢ v)′, □ is
the neutral element.
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If X is a metric space with metric d , extend d to X̄ such that for
every x , y ∈ X ,

d(x−1, y−1) = d(x , y),

d(x , y−1) = d(x , e) = d(x−1, e) = 1.
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For u = x0 · · · xn and v = y0 · · · yn in W (X ), let

ρ(u, v) = Σ0≤i≤nd(xi , yi ).

And for u, v ∈ F (X ), let

d(u, v) = inf{ρ(u∗, v∗) : (u∗)′ = u, (v∗)′ = v , lh(u) = lh(v)}.
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Let m, n ∈ N and m ≤ n. A bijection θ on {m, · · · , n} is a match
if

(1) θ2 = id;

(2) there is no i , j ∈ {m, · · · , n} such that i < j < θ(i) < θ(j).
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Given w = x0 · · · xn ∈ W (X ) and a match θ on {0, · · · , n}, let

xθi =


xi , θ(i) > i .
e, θ(i) = i .

x−1
θ(i), θ(i) < i .

and w θ = xθ0 · · · xθn .

Theorem Given w = x0 · · · xn ∈ W (X ) and a match θ on
{0, · · · , n}, we have that (wθ)′ = □.
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Theorem(Ding-Gao)
For every u ∈ F (X ), d(u,□) = min{ρ(u, uθ) : θ is a match}.

Theorem(Graev)
Let (X , d) be a metric space, then the d can be extended to a
two-sided invariant metric on F (X ). Furthermore, F (X ) is a
topological group in the topology induced by d .
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Let (F̄ (X ), d) be the completion of (F (X ), d), then (F̄ (X ), d) is a
Polish group.

On the Baire space ωω we have the canonical metric d such that
for x ̸= y ∈ ωω, d(x , y) = 2−n, where n is the least number such
that x(n) ̸= y(n). The group (F̄ (ωω), d) is called the Graev metric
group.

Theorem
The Graev metric group is a surjectively universal tsi Polish group.
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New metrics on free groups
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Let R+ denote the set of non-negative real numbers. A function
Γ : X̄ × R+ → R+ is a scale on X̄ if the following hold for any
x ∈ X̄ and r ∈ R+

(i) Γ(e, r) = r , Γ(x , r) ≥ r ;

(ii) Γ(x , r) = 0 iff r = 0;

(iii) Γ(x , ·) is a monotone increasing function with respect to the
second variable;

(iv) limr→0Γ(x , r) = 0.
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Example
Take Γ(x , r) = r for every x ∈ X̄ , then Γ is the trivial scale.

Example
Let G be a metrizable group and dG be a compatible left-invariant
metric on G . Define ΓG : G × R+ → R+ by

ΓG (g , r) = max{r , sup{dG (1G , g−1hg) : dG (1G , h) ≤ r}}.

It is easy to see that ΓG satisfies the conditions (i)–(iv) in the
definition of a scale. We will also call ΓG the scale on G .

Ruiwen Li Surjectively universal Polish Group



Example
Take Γ(x , r) = r for every x ∈ X̄ , then Γ is the trivial scale.

Example
Let G be a metrizable group and dG be a compatible left-invariant
metric on G . Define ΓG : G × R+ → R+ by

ΓG (g , r) = max{r , sup{dG (1G , g−1hg) : dG (1G , h) ≤ r}}.

It is easy to see that ΓG satisfies the conditions (i)–(iv) in the
definition of a scale. We will also call ΓG the scale on G .

Ruiwen Li Surjectively universal Polish Group



Let Γ be a scale on X . For l ∈ N, w ∈ W (X ) with lh(w) = l + 1
and θ a match on 0, · · · , l , define Nθ

Γ(w) by induction on l as
follows:

(0) for l = 0, let w = x and define Nθ
Γ(w) = d(e, x);

(1) if l > 0 and θ(0) = k < l , let θ1 = θ ↾ 0, · · · , k,
θ2 = θ ↾ k + 1, · · · , l and w = w1 ⌢ w2 where
lh(w1) = k + 1; define

Nθ
Γ(w) = Nθ1

Γ (w1) + Nθ2
Γ (w2);

(2) if l > 0 and θ(0) = l , let θ1 = θ ↾ 1, · · · , l − 1 and
w = x−1w1y where x , y ∈ X̄ ; then lh(w1) = l − 1. Define

Nθ
Γ(w) = d(x , y) +max{Γ(x ,Nθ1

Γ (w1)), Γ(y ,N
θ1
Γ (w1))}.
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For w ∈ F (X ), define

NΓ(w) = inf{Nθ
Γ(w

∗) : (w∗)′ = w , θ is a match}.

And dΓ(u, v) = NΓ(u
−1v) for u, v ∈ F (X ).

Fact
For every scale Γ and u, v ∈ F (X ), dΓ(u, v) ≥ d(u, v) where d is
the Graev metric.
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Theorem(Ding-Gao)
Let (X , d) be a metric space, Γ is a scale on X̄ , then the dΓ is a
left invariant metric on F (X ) extending d . Furthermore, F (X ) is a
topological group in the topology induced by dΓ, denote it by
FΓ(X ).

Let d−1
Γ (u, v) = dΓ(u

−1, v−1), and ∆Γ = d−1
Γ + dΓ, then ∆Γ is a

compatible metric on topological group FΓ(X ). The completion of
(FΓ(X ),∆Γ) is a Polish group, denoted by F̄Γ(X ).
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Theorem(Ding-Gao)
Let G be a topological group and dG a compatible left-invariant
metric on G . Let Γ be a scale on X . Let φ : X̄ → G be a function.
Suppose that for any x , y ∈ X and r ∈ R+:

(a) φ(e) = 1G ; φ(x
−1) = φ(x)−1;

(b) dG (φ(x), φ(y)) ≤ d(x , y); and

(c) ΓG (φ(x), r) ≤ Γ(x , r).

Then φ can be uniquely extended to a continuous group
homomorphism Φ : F (X ) → G such that for any w ∈ F (X )

dG (Φ(w), 1G ) ≤ NΓ(w)
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Theorem(Ding)
There is a scale on ωω such that F̄Γ(ω

ω) is a surjectively universal
Polish group.
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Main theorem
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Theorem(Ding-L.-Peng)
There exists a surjectively universal Polish group that is not
universal. In particular, there is a non-universal Polish group that
induces a complete orbit equivalence relation.
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Let
Nn = {x ∈ ωω : ∀m ≥ n, x(m) = 0}.

and for x ∈ ωω, let

πn(x)(m) =

{
x(m), m < n.
0, m ≥ n.

Then for u, v ∈ F (Nn), if u ̸= v , we have dΓ(u, v) ≥ 2−n, so
F (Nn) is a discrete closed subgroup of F Γ(ω

ω), denote it by
FΓ(Nn).
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Step 1
The map πn can be uniquely extended to a continuous
homomorphism fn from F Γ(ω

ω) to FΓ(Nn) by the theorem we
mentioned.
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Step 2
For g ̸= h ∈ F Γ(ω

ω), there is some n ∈ N such that fn(g) ̸= fn(h).
So the homomorphism from F Γ(ω

ω) to
∏

n∈N F (Nn) is continuous
and injective.
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Step 3
The group (R,+) is connected, it cannot be continuously
embedded to totally disconnected group

∏
n∈N F (Nn). Moreover,

by the automatic continuity of Iso(U), Iso(U) even cannot be an
abstract subgroup of

∏
n∈N F (Nn).

Theorem(Sabok)
For every separable topological group H and an abstract
homomorphism from Iso(U) to H, the homomorphism is
continuous.
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Thank You!
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