A surjectively universal Polish group which is not universal

Ruiwen Li (joint with Longyun Ding and Bo Peng)

Nankai University

Descriptive Dynamics and Combinatorics Seminar October 7, 2025

Preliminary

A Polish group is a topological group whose topology is a Polish topology. For a Polish group G and Polish space X, a Borel group action is a group action a of G on X, and as a function from $G \times X$ to X it is Borel. The orbit equivalence relation E_G^X induced by a is defined as:

$$xE_G^Xy \Leftrightarrow \exists g \in G, a(g,x) = y.$$

The space X together with the action a is also called a Borel G-space.

For an equivalence relation E defined on a Polish space X and another equivalence relation F defined on a Polish space Y, if there is a Borel map f from X to Y such that for any $x, y \in X$, we have

$$xEy \Leftrightarrow f(x)Ff(y)$$

then we say *E* is Borel reducible to *F*, denoted by $E \leq_B F$.

Theorem(Gao-Jackon)

Let G be a countable abelian group and E_G^X be induced by a Borel G-action, then E_G^X is hyperfinite.

Theorem(Mackey-Hjorth)

Let G be a Polish group and H be a closed subgroup of it. Then for every equivalence relation E_H^X induced by a Borel H-action, there is a Borel G-action on some Polish space Y such that E_H^X is Borel reducible to E_G^Y .

Theorem(Mackey-Hjorth)

Let G be a Polish group and H be a closed subgroup of it. Then for every equivalence relation E_H^X induced by a Borel H-action, there is a Borel G-action on some Polish space Y such that E_H^X is Borel reducible to E_G^Y .

Theorem(Becker-Kechris)

For every Polish group G, there is a universal Borel G-space.

We denote the induced equivalence relation on the universal Borel G-space by E_G .

Corollary

Let G be a Polish group and H be a closed subgroup of it, then $E_H \leq_B E_G$.

Corollary

Let G be a Polish group and H be a closed subgroup of it, then $E_H \leq_B E_G$.

Definition

A Polish group G is universal if every Polish group is isomorphic to a closed subgroup of G.

Corollary

Let G be a Polish group and H be a closed subgroup of it, then $E_H \leq_B E_G$.

Definition

A Polish group G is universal if every Polish group is isomorphic to a closed subgroup of G.

Corollary

If a given Polish group G is universal, then E_G is a complete orbit equivalence relation.

Theorem(Zielinski)

The homeomorphism relation on compact Polish spaces is a complete orbit equivalence relation.

Theorem(Gao-Kechris, Clemens)

The isometry relation of Polish metric spaces is a complete orbit equivalence relation.

Open Problem(Sabok)

If E_G is a complete orbit equivalence relation, is G necessarily a universal Polish group?

Fact

Let G be a Polish group and H be a quotient Polish group of it. Then for every equivalence relation E_H^X induced by a Borel H-action, it can also be induced by a Borel G-action X.

Definition

A surjectively universal Polish group G is such that every Polish group is isomorphic to a topological quotient group of G.

Definition

A surjectively universal Polish group G is such that every Polish group is isomorphic to a topological quotient group of G.

Corollary

If a given Polish group G is surjectively universal, then E_G is a complete orbit equivalence relation.

Theorem(Ding)

There exists a surjectively universal Polish group.

Theorem(Ding)

There exists a surjectively universal Polish group.

Theorem(Ding-L.-Peng)

There exists a surjectively universal Polish group that is not universal.

The Graev metric group

Let X be a set, then take $e \neq X$ and $X^{-1} = \{x^{-1} : x \in X\}$. Denote $X \cup X^{-1} \cup \{e\}$ by \bar{X} . Let $e^{-1} = e$ and $(x^{-1})^{-1} = x$. Let X be a set, then take $e \neq X$ and $X^{-1} = \{x^{-1} : x \in X\}$. Denote $X \cup X^{-1} \cup \{e\}$ by \bar{X} . Let $e^{-1} = e$ and $(x^{-1})^{-1} = x$.

We denote the set of words over \bar{X} by W(X), in other words, $W(X) = \bar{X}^{<\omega}$

For w in W(X), if e and xx^{-1} don't occur in w as a subword for every $x \in \bar{X}$, then we say w is irreducible. The collection of irreducible words is denoted by F(X). We use the symbol \square to represent the empty word.

For w in W(X), if e and xx^{-1} don't occur in w as a subword for every $x \in \overline{X}$, then we say w is irreducible. The collection of irreducible words is denoted by F(X). We use the symbol \square to represent the empty word.

For w in W(X), by deleting its subwords with the form e or xx^{-1} where $x \in \bar{X}$, we get a irreducible word, denoted by w'. we say w is a trivial extension of w'.

For w in W(X), if e and xx^{-1} don't occur in w as a subword for every $x \in \overline{X}$, then we say w is irreducible. The collection of irreducible words is denoted by F(X). We use the symbol \square to represent the empty word.

For w in W(X), by deleting its subwords with the form e or xx^{-1} where $x \in \overline{X}$, we get a irreducible word, denoted by w'. we say w is a trivial extension of w'.

The set F(X) is a group under the operation $u \cdot v = (u \cap v)'$, \square is the neutral element.

If X is a metric space with metric d, extend d to \bar{X} such that for every $x,y\in X$,

$$d(x^{-1}, y^{-1}) = d(x, y),$$

$$d(x, y^{-1}) = d(x, e) = d(x^{-1}, e) = 1.$$

For $u = x_0 \cdots x_n$ and $v = y_0 \cdots y_n$ in W(X), let

$$\rho(u,v)=\Sigma_{0\leq i\leq n}d(x_i,y_i).$$

And for $u, v \in F(X)$, let

$$d(u,v) = \inf\{\rho(u^*,v^*) : (u^*)' = u, (v^*)' = v, lh(u) = lh(v)\}.$$

Let $m, n \in \mathbb{N}$ and $m \leq n$. A bijection θ on $\{m, \dots, n\}$ is a match if

- (1) $\theta^2 = id$;
- (2) there is no $i, j \in \{m, \dots, n\}$ such that $i < j < \theta(i) < \theta(j)$.

Given $w=x_0\cdots x_n\in W(X)$ and a match θ on $\{0,\cdots,n\}$, let

$$x_i^{\theta} = \begin{cases} x_i, & \theta(i) > i. \\ e, & \theta(i) = i. \\ x_{\theta(i)}^{-1}, & \theta(i) < i. \end{cases}$$

and $w^{\theta} = x_0^{\theta} \cdots x_n^{\theta}$.

Given $w = x_0 \cdots x_n \in W(X)$ and a match θ on $\{0, \cdots, n\}$, let

$$x_i^{\theta} = \begin{cases} x_i, & \theta(i) > i. \\ e, & \theta(i) = i. \\ x_{\theta(i)}^{-1}, & \theta(i) < i. \end{cases}$$

and $w^{\theta} = x_0^{\theta} \cdots x_n^{\theta}$.

Theorem Given $w = x_0 \cdots x_n \in W(X)$ and a match θ on $\{0, \dots, n\}$, we have that $(w^{\theta})' = \square$.

Theorem(Ding-Gao)

For every $u \in F(X)$, $d(u, \square) = \min\{\rho(u, u^{\theta}) : \theta \text{ is a match}\}.$

Theorem(Ding-Gao)

For every $u \in F(X)$, $d(u, \square) = \min\{\rho(u, u^{\theta}) : \theta \text{ is a match}\}.$

Theorem(Graev)

Let (X, d) be a metric space, then the d can be extended to a two-sided invariant metric on F(X). Furthermore, F(X) is a topological group in the topology induced by d.

Let $(\bar{F}(X), d)$ be the completion of (F(X), d), then $(\bar{F}(X), d)$ is a Polish group.

On the Baire space ω^{ω} we have the canonical metric d such that for $x \neq y \in \omega^{\omega}$, $d(x,y) = 2^{-n}$, where n is the least number such that $x(n) \neq y(n)$. The group $(\bar{F}(\omega^{\omega}), d)$ is called the Graev metric group.

Let $(\bar{F}(X), d)$ be the completion of (F(X), d), then $(\bar{F}(X), d)$ is a Polish group.

On the Baire space ω^{ω} we have the canonical metric d such that for $x \neq y \in \omega^{\omega}$, $d(x,y) = 2^{-n}$, where n is the least number such that $x(n) \neq y(n)$. The group $(\bar{F}(\omega^{\omega}), d)$ is called the Graev metric group.

Theorem

The Graev metric group is a surjectively universal tsi Polish group.

New metrics on free groups

Let \mathbb{R}_+ denote the set of non-negative real numbers. A function $\Gamma: \bar{X} \times \mathbb{R}_+ \to \mathbb{R}_+$ is a scale on \bar{X} if the following hold for any $x \in \bar{X}$ and $r \in \mathbb{R}_+$

- (i) $\Gamma(e, r) = r$, $\Gamma(x, r) \ge r$;
- (ii) $\Gamma(x, r) = 0$ iff r = 0;
- (iii) $\Gamma(x,\cdot)$ is a monotone increasing function with respect to the second variable;
- (iv) $\lim_{r\to 0}\Gamma(x,r)=0$.

Example

Take $\Gamma(x,r)=r$ for every $x\in \bar{X}$, then Γ is the trivial scale.

Example

Take $\Gamma(x,r)=r$ for every $x\in \bar{X}$, then Γ is the trivial scale.

Example

Let G be a metrizable group and d_G be a compatible left-invariant metric on G. Define $\Gamma_G: G \times \mathbb{R}_+ \to \mathbb{R}_+$ by

$$\Gamma_G(g,r) = \max\{r, \sup\{d_G(1_G, g^{-1}hg) : d_G(1_G, h) \le r\}\}.$$

It is easy to see that Γ_G satisfies the conditions (i)–(iv) in the definition of a scale. We will also call Γ_G the scale on G.

Let Γ be a scale on X. For $I \in \mathbb{N}$, $w \in W(X)$ with Ih(w) = I + 1 and θ a match on $0, \dots, I$, define $N_{\Gamma}^{\theta}(w)$ by induction on I as follows:

- (0) for l = 0, let w = x and define $N^{\theta}_{\Gamma}(w) = d(e, x)$;
- (1) if l > 0 and $\theta(0) = k < l$, let $\theta_1 = \theta \upharpoonright 0, \dots, k$, $\theta_2 = \theta \upharpoonright k + 1, \dots, l$ and $w = w_1 \smallfrown w_2$ where lh(w1) = k + 1; define

$$N_{\Gamma}^{\theta}(w) = N_{\Gamma}^{\theta_1}(w_1) + N_{\Gamma}^{\theta_2}(w_2);$$

(2) if l > 0 and $\theta(0) = l$, let $\theta_1 = \theta \upharpoonright 1, \dots, l-1$ and $w = x^{-1}w_1y$ where $x, y \in \overline{X}$; then $lh(w_1) = l-1$. Define

$$N_{\Gamma}^{\theta}(w) = d(x,y) + \max\{\Gamma(x,N_{\Gamma}^{\theta_1}(w_1)),\Gamma(y,N_{\Gamma}^{\theta_1}(w_1))\}.$$

For $w \in F(X)$, define

$$N_{\Gamma}(w) = \inf\{N_{\Gamma}^{\theta}(w^*) : (w^*)' = w, \theta \text{ is a match}\}.$$

And
$$d_{\Gamma}(u,v) = N_{\Gamma}(u^{-1}v)$$
 for $u,v \in F(X)$.

For $w \in F(X)$, define

$$N_{\Gamma}(w) = \inf\{N_{\Gamma}^{\theta}(w^*) : (w^*)' = w, \theta \text{ is a match}\}.$$

And $d_{\Gamma}(u, v) = N_{\Gamma}(u^{-1}v)$ for $u, v \in F(X)$.

Fact

For every scale Γ and $u, v \in F(X)$, $d_{\Gamma}(u, v) \ge d(u, v)$ where d is the Graev metric.

Theorem(Ding-Gao)

Let (X,d) be a metric space, Γ is a scale on \bar{X} , then the d_{Γ} is a left invariant metric on F(X) extending d. Furthermore, F(X) is a topological group in the topology induced by d_{Γ} , denote it by $F_{\Gamma}(X)$.

Theorem(Ding-Gao)

Let (X,d) be a metric space, Γ is a scale on \bar{X} , then the d_{Γ} is a left invariant metric on F(X) extending d. Furthermore, F(X) is a topological group in the topology induced by d_{Γ} , denote it by $F_{\Gamma}(X)$.

Let $d_{\Gamma}^{-1}(u,v)=d_{\Gamma}(u^{-1},v^{-1})$, and $\Delta_{\Gamma}=d_{\Gamma}^{-1}+d_{\Gamma}$, then Δ_{Γ} is a compatible metric on topological group $F_{\Gamma}(X)$. The completion of $(F_{\Gamma}(X),\Delta_{\Gamma})$ is a Polish group, denoted by $\bar{F}_{\Gamma}(X)$.

Theorem(Ding-Gao)

Let G be a topological group and d_G a compatible left-invariant metric on G. Let Γ be a scale on \overline{X} . Let $\varphi: \overline{X} \to G$ be a function. Suppose that for any $x,y\in \overline{X}$ and $r\in \mathbb{R}_+$:

- (a) $\varphi(e) = 1_G$; $\varphi(x^{-1}) = \varphi(x)^{-1}$;
- (b) $d_G(\varphi(x), \varphi(y)) \leq d(x, y)$; and
- (c) $\Gamma_G(\varphi(x), r) \leq \Gamma(x, r)$.

Then φ can be uniquely extended to a continuous group homomorphism $\Phi: F(X) \to G$ such that for any $w \in F(X)$

$$d_G(\Phi(w), 1_G) \leq N_{\Gamma}(w)$$

Theorem(Ding)

There is a scale on $\overline{\omega^{\omega}}$ such that $\bar{F}_{\Gamma}(\omega^{\omega})$ is a surjectively universal Polish group.

Main theorem

Theorem(Ding-L.-Peng)

There exists a surjectively universal Polish group that is not universal. In particular, there is a non-universal Polish group that induces a complete orbit equivalence relation.

Let

$$\mathcal{N}_n = \{ x \in \omega^\omega : \forall m \ge n, x(m) = 0 \}.$$

and for $x \in \omega^{\omega}$, let

$$\pi_n(x)(m) = \begin{cases} x(m), & m < n. \\ 0, & m \ge n. \end{cases}$$

Then for $u, v \in F(\mathcal{N}_n)$, if $u \neq v$, we have $d_{\Gamma}(u, v) \geq 2^{-n}$, so $F(\mathcal{N}_n)$ is a discrete closed subgroup of $\overline{F}_{\Gamma}(\omega^{\omega})$, denote it by $F_{\Gamma}(\mathcal{N}_n)$.

The map π_n can be uniquely extended to a continuous homomorphism f_n from $\overline{F}_{\Gamma}(\omega^{\omega})$ to $F_{\Gamma}(\mathcal{N}_n)$ by the theorem we mentioned.

The map π_n can be uniquely extended to a continuous homomorphism f_n from $\overline{F}_{\Gamma}(\omega^{\omega})$ to $F_{\Gamma}(\mathcal{N}_n)$ by the theorem we mentioned.

Theorem(Ding-Gao)

Let G be a topological group and d_G a compatible left-invariant metric on G. Let Γ be a scale on \overline{X} . Let $\varphi:X\to G$ be a function. Suppose that for any $x,y\in\overline{X}$ and $r\in\mathbb{R}_+$:

- (a) $\varphi(e) = 1_G$; $\varphi(x^{-1}) = \varphi(x)^{-1}$;
- (b) $d_G(\varphi(x), \varphi(y)) \leq d(x, y)$; and
- (c) $\Gamma_G(\varphi(x), r) \leq \Gamma(x, r)$.

Then φ can be uniquely extended to a continuous group homomorphism $\Phi: F(X) \to G$ such that for any $w \in F(X)$

$$d_G(\Phi(w), 1_G) \leq N_{\Gamma}(w)$$

For $g \neq h \in \overline{F}_{\Gamma}(\omega^{\omega})$, there is some $n \in \mathbb{N}$ such that $f_n(g) \neq f_n(h)$. So the homomorphism from $\overline{F}_{\Gamma}(\omega^{\omega})$ to $\prod_{n \in \mathbb{N}} F(\mathcal{N}_n)$ is continuous and injective.

The group $(\mathbb{R},+)$ is connected, it cannot be continuously embedded to totally disconnected group $\prod_{n\in\mathbb{N}}F(\mathcal{N}_n)$. Moreover, by the automatic continuity of $\mathrm{Iso}(\mathbb{U})$, $\mathrm{Iso}(\mathbb{U})$ even cannot be an abstract subgroup of $\prod_{n\in\mathbb{N}}F(\mathcal{N}_n)$.

The group $(\mathbb{R},+)$ is connected, it cannot be continuously embedded to totally disconnected group $\prod_{n\in\mathbb{N}}F(\mathcal{N}_n)$. Moreover, by the automatic continuity of $\mathrm{Iso}(\mathbb{U})$, $\mathrm{Iso}(\mathbb{U})$ even cannot be an abstract subgroup of $\prod_{n\in\mathbb{N}}F(\mathcal{N}_n)$.

Theorem(Sabok)

For every separable topological group H and an abstract homomorphism from $\operatorname{Iso}(\mathbb{U})$ to H, the homomorphism is continuous.

Thank You!